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The minimum-length least-squares solution is found using the Moore-Penrose
Generalized Inverse (Gl).
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The resolution matrix contains
information about tradeoffs

between model parameters that
Resolution matrix the available data cannot resolve.




2004 M, 6.0 Parkfield Earthquake:
Inversion of GPS Data
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Model assumptions:

Latitude(°N)

v The fault strikes 140° v The velocity structure
SE and dips 87¢ SW;, is well approximated

v The rupture was at by a 1D bilateral model

maximum 40 km long; ~ (NE - slow; SW - fast;
v The ruptured area is after Eberhart-Phillips
deeper than 0.5 km and Michael (1993) and

12(1).5 | 12(;.4 | l (no Surface rupture); Thurber Et al. (2003)).
Longitude ("W)




The Parkfield GPS Resolution Matrix Visualized

(a) Diagonal Elements of Resolution Matrix (No Rake Rotation)
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\ - - - The resolution matrix

X = Af = A(AX) — (AA)x contains information
about tradeoffs between
model parameters that

R the available data cannot

Resolution matrix resolve.




Diagonal elements of Resolution Matrix

(with rake)

b) Diagonal Elements of Resolution Matrix (no rake - strike direction)
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¢) Diagonal Elements of Resolution Matrix (no rake - up direction)
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The importance of the off-diagonal
elements of R

Due to structure in R, it is possible to get structure by
inverting a random field

a) Input Sllp Model (Uncorrelated Random Field)
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(b) Output Slip Model (Inversion Result)
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The importance of the off-diagonal
elements of R

Due to structure in R, it is possible to get structure by
inverting a random field

a) Input Sllp Model (Uncorrelated Random Field)
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(@) Input Slip Model (Checkerboard Test)

Input Model
(same for
each grid)
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(b) Inversion Result — Small Uniform Grid (Severely Undertermined)
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Alternative Griddings,
with Resolution In
Mind

Small uniform grid: Correctly recovers
structure near surface, but generates
spurious structure in poorly resolved
areas

Smoothing can get rid of the spurious
structure at depth, but some structure
near the surface is lost.




(@) Input Slip Model (Checkerboard Test)
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(c) Inversion Result — Large, Nearly Uniform Grid

Large uniform grid. Loses information
near surface, gives incorrect slip at
depth
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Distance along Strike (km) (near the surface the inversion is
sensitive to structure on a finer scale
than is parameterized)




(@) Input Slip Model (Checkerboard Test)
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(c) Inversion Result — Large, Nearly Uniform Grid

Large uniform grid. Loses information
near surface, gives incorrect slip at
depth
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(d) Inversion Result — Nonregular Grid

Non-reqular grid: Correctly recovers
structure near surface, and averages
out slip correctly at depth
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Distance along Strike (km) Nonuniform smoothing can achieve a
similar result!




Two types of error must be parameterized in order to interpret
Inversion results:

Resolution error (error due to “under-determined-ness’)

» Technically unbounded!
» Resolution matrix gives length scales

Perturbation error (error due to Green’s function & data errors)

» Can easily be sampled with Monte Carlo sampling
» Model Covariance Matrix gives error bounds

Advantages Of nonunlform grld (d) Inversion Result — Nonregular Grid

v Resolution error & perturbation error easily 05
separated and easy to visualize 45

v’ Structure in well-resolved areas recovered 8.5
while spurious structure is avoided
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Inversion of Parkfield GPS Data

On Regular Grid:

(a) Mean Slip (cm) — Regular Grid Inversion (b) Standard Deviation (cm) of Regular Grid Solution
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Data errors sampled via Monte Carlo

On lrregular Grid: @

(c) Mean Slip (cm) — Irregular Grid Inversion (d) Standard Deviation (cm) of Irregular Grid Solution
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Inversion of Parkfield GPS Data

On Regular Grid:

(a) Mean Slip (cm) — Regular Grid Inversion
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On Irregular Grid:

(c) Mean Slip (cm) — Irregular Grid Inversion
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(b) Standard Deviation (cm) of Regular Grid Solution
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(d) Standard Deviation (cm) of Irregular Grid Solution
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Irregular Grid results in
more slip near hypocenter




Match to Data

Irreqular Grid — Variance Reduction of 89%

(e) Irregular Grid Inversion Data Fit -- Horizontal Component
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(f) Irregular Grid Inversion Data Fit -- Vertical Component
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Strong-motion Inversion
constrained by GPS slip model

Irregular Grid:

(c) Mean Slip (cm) — Irregular Grid Inversion
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We want to constrain
the final slip in the
strong-motion
Inversion to match
our GPS inversion
within the error
bounds.
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Two-step inversion of GPS and
strong-motion data

A) Slip Amplitude (m) and Rupture Time (1-sec)
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%2 slip model
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B) Average Rupture Velocity (km/s)
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Slip near hypocenter
required to fit stations

to the southeast
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How the addition of GPS data changes the
result

S ©
w s

o
N
(w) spnydwy dis

Strong motion
only

Distance down-dip (km)

o O
—A

GPS + strong
motion




Resolution for Strong-Motion Inversion
(movie)
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Model Covariance for Strong-Motion Inversion
(movie)
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Final Slip

3 very different
ruptures
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Inversion is ill-conditioned

Most data variance can be reproduced with only a
few model parameters

Distribution of Singular Yalues
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Still, adding more stations does not fundamentally
change the shape of the singular-value distribution
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Strategies for Uncertainty Assessment

Jackknife / Bootstrap (invert subset of data -- may not work well for underdetermined
problems)

Compute Resolution and Covariance Matrices

Present Multiple Models

® Vary amount of smoothing or damping, add in null vectors to generate additional models,
change model parameterization

Present end-member models (e.g. smoothest model, minimum-moment model, Gl
solution)

® Many nonlinear algorithms give multiple models (different random seed)

® Synthetic Tests

® |nvert synthetic data -- heterogeneous or smooth synthetic model (test ability to recover
features or avoid artifacts), add noise

® Test if inversion can fit data without certain features

® Participate in Blind Test !




