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Bayesian inference for inverse scattering

Overall goals: Develop algorithms for solving statistical inverse problems
that can scale to high dimensional probability spaces and expensive
forward models, and tailor them to inverse shape and medium (acoustic,
elastic, electromagnetic) scattering problems
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Bayesian inference for inverse scattering, cont.

Bayesian framework for statistical inverse problem: when data and/or model
have uncertainties, solution of inverse problem expressed as a posterior
probability density function

Central challenge: for inverse problems characterized by high-dimensional
parameter spaces, method of choice is to sample the posterior density using
Markov chain Monte Carlo (MCMC)

For inverse problems characterized by expensive forward simulations,
contemporary MCMC methods become prohibitive

Intractability of MCMC methods for large-scale statistical inverse problems
can be traced to their black-box treatment of the parameter-to-observable
map

Goal: develop MCMC methods that exploit the structure of the
parameter-to-observation map (including its derivatives), as has been done
successfully in PDE-constrained optimization
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Bayesian formulation for statistical inverse problem

Given:
πpr(x) := prior p.d.f. of model parameters x

πobs(y) := prior p.d.f. of the observables y

πmodel(y|x) := conditional p.d.f. relating y and x

Then posterior p.d.f. of model parameters is given by:

πpost(x) def= πpost(x|yobs)

∝ πpr(x)
∫

Y

πobs(y)πmodel(y|x)
µ(y)

dy

∝ πpr(x)π(yobs|x)

From A. Tarantola, Inverse Problem Theory, SIAM, 2005

Omar Ghattas (ICES, UT-Austin) KAUST Source Inversion Workshop KAUST 22 March 2010 5 / 42



Gaussian additive noise

Given the parameter-to-observable map y = f(x), a common noise model is
Gaussian additive noise:

yobs = f(x) + ε, ε ∼ N(0,Γnoise)

If the prior is taken as Gaussian with mean xpr and covariance Γpr, then the
posterior can be written

πpost(x) ∝ exp
(
− 1

2 ‖ f(x)− yobs ‖2Γ−1
noise
− 1

2 ‖ x− xpr ‖2Γ−1
pr

)
Note that “most likely” point is given by

xMAP
def= arg max

x
πpost(x)

= arg min
x

1
2 ‖ f(x)− yobs ‖2Γ−1

noise
+ 1

2 ‖ x− xpr ‖2Γ−1
pr

This is an (appropriately weighted) deterministic inverse problem!
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Gaussian additive noise, linear inverse problem

Suppose further the parameter-to-observable map is linear, i.e.

y = Fx

Then the posterior can be written

πpost(x) ∝ exp
(
−1

2 ‖ Fx− yobs ‖2Γ−1
noise
−1

2 ‖ x− xpr ‖2Γ−1
pr

)
The posterior is then Gaussian with

x ∼ N(xMAP,Γpost)

The covariance is the inverse Hessian of the negative log posterior:

Γ−1
post = F TΓ−1

noiseF + Γ−1
pr

= ∇2
x(− log πpost)

I.e., the covariance is given by the inverse Hessian of the regularized misfit
function that is minimized by deterministic methods
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MCMC sampling

Example Probability Density

Given a probability density π(x):

How do we interrogate the distribution?

Often high dimensional

Computationally expensive

The MCMC Approach

Replace π(x) by a sample chain {xk}
Compute using ergodic averages

E[f(X)] =

Z
Rn

f(x)π(dx) ≈
1

N

NX
j=1

f(xk)
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MCMC sampling

Sampled Probability Density

Given a probability density π(x):

How do we interrogate the distribution?

Often high dimensional

Computationally expensive

The MCMC Approach

Replace π(x) by a sample chain {xk}
Compute using ergodic averages

E[f(X)] =

Z
Rn

f(x)π(dx) ≈
1

N

NX
j=1

f(xk)
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Metropolis-Hastings algorithm

1 xk ← x0

2 k ← 0
3 Choose a point y from the proposal density q(xk, · )

4 α← min
(

1,
π(y)q(y,xk)
π(xk)q(xk,y)

)
5 If α > rand([0, 1]) Then

Accept: xk+1 = y

Otherwise

Reject: xk+1 = xk

End If

6 k ← k + 1
7 Repeat from step 3
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Some proposal functions

The best proposal function is just the pdf itself:

q(xk,y) = π(y)

α(xk,y) = min
(

1, π(y)π(xk)
π(xk)π(y)

)
≡ 1

Would like to use an approximation π̃(y)

Gaussian random walks:

q(xk,y) = N(µ,Γ)
Lots of freedom in choosing µ and Γ

Both can depend on xk

Many others:

Hybrid Monte Carlo

Gibbs sampling
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Approaches to reducing the cost of MCMC

Basic difficulty: evaluating posterior density requires forward solve;
philosophies to circumvent:

Reduce-then-sample:
Reduced model of the forward problem

POD (e.g. Wang and Zabaras, Willcox et al., Patera et al.)

Reduced model of the outputs

PC (e.g Marzouk, Najm, and Rahn, Zabaras et al., Marzouk and Xiu)
Gaussian process model (e.g. O’Hagan and Kennedy, Higdon)

“Preconditioned” MCMC using reduced order models

Higdon, Lee, and Holloman
Christen and Fox
Efendiev, Hou, and Luo
Efendiev, Datta-Gupta, Ginting, Ma, and Mallick

We will pursue: Sample-then-reduce

Exploit structure of πpost(x), in particular local covariance related to
Hessian of deterministic inverse problem
Build on fast algorithms from deterministic inverse solvers
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Background: Langevin dynamics

Langevin dynamics

Stochastic differential equation (continuous in time)

π(x) is a stationary solution
⇒ Trajectories sample π(x)

Uses derivative information of π(x)
Can be preconditioned for better performance

Discrete Langevin dynamics

Discretization with timestep ∆t introduces bias

Use as proposal distribution for Metropolis-Hastings MCMC
(U. Grenander and M. Miller, 1994)

Langevin-MCMC used for PDE-based inverse problems by A. Stuart and
Y. Efendiev
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Preconditioned Langevin MCMC

Given the target density π(x), the associated Langevin SDE is given by:

dXt = −A∇x(− log π)dt+
√

2A1/2dW t

Discretize with a timestep ∆t to derive Langevin proposal:

xprop

k+1 = xk −A∇x(− log π)∆t+
√

2∆tA1/2N(0, I)

Notes:

Preconditioner A must be symmetric positive definite

Process is ergodic (convergence of time averages)

W t is i.i.d. vector of standard Brownian motions

W t has independent increments given by

W (t+∆t) −W t ∼ N
(
0,∆t I

)
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Stochastic Newton’s method

Langevin MCMC proposal given by:

xprop

k+1 = xk −A∇x(− log π)∆t+
√

2∆tA1/2N(0, I)

Take A to be the inverse of the (local) Hessian (of the negative log
posterior) and set ∆t = 1:

A ≡H(x)−1 = ∇2
x(− log π(x))−1

=
(
F TΓ−1

noiseF + Γ−1
pr

)−1
(e.g. for Gaussian noise and prior)

Then we have the stochastic equivalent of Newton’s method:

xprop

k+1 = xk −H−1∇x(− log π) + N(0,H−1)
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Stochastic Newton: Optimal sampling of Gaussians

When the target density π(x) is Gaussian, N(µ,Γ):

− log π(x) ≡ 1
2 ‖ x− µ ‖Γ−1

Apply Stochastic Newton:

xprop

k+1 = xk −H−1∇x(− log π) +H−1/2N(0, I)

= xk − ΓΓ−1(xk − µ) + Γ1/2N(0, I)
= µ+ Γ1/2N(0, I)
= N(µ,Γ)

Samples xk act like independent draws from the true pdf
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Deterministic vs. Stochastic Newton

Deterministic Newton:

Given a cost function − log π(x)
xk+1 = xk −H−1∇x(− log π)
Minimizes local quadratic approximation at each step

Stochastic Newton:

Given a probability density π(x)
xk+1 = xk −H−1∇x(− log π) + N(0,H−1)
Samples local Gaussian approximation at each step

Unpreconditioned Langevin resembles steepest descent

xk+1 = xk −∆t∇x(− log π) +
√

2∆t N(0, I)
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Rosenbrock illustration
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Rosenbrock illustration: Random walk
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Rosenbrock illustration: Unpreconditioned Langevin
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Rosenbrock illustration: Hessian-based Gaussian proposal

−0.5 0 0.5 1
−0.5

0

0.5

1

x

y

xprop

k+1 = xk + N(0,H−1)

Omar Ghattas (ICES, UT-Austin) KAUST Source Inversion Workshop KAUST 22 March 2010 22 / 42



Rosenbrock illustration: Hessian-preconditioned Langevin
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Stochastic Newton: Large-scale issues

At each MCMC step we need to

solve systems of form Hv = b

evaluate matvecs of form H− 1
2w

Key idea: never form H; instead:

recognize that H is sum of data misfit term, which is often equivalent to a
compact operator, and (the inverse of) a smoothing prior, which is often
equivalent to a differential operator:

F T Γ−1
noiseF + Γ−1

pr

develop fast algorithms for low rank (in particular, truncated spectral
decomposition) approximation of data misfit operator; often require
constant number of forward/adjoint solves, independent of problem size

combine with Sherman-Morrison-Woodbury to invert/factor (requires
constant number of forward/adjoint solves)

construct fast (multilevel) preconditioners for Hessian
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1D inverse elastic medium scattering

Forward problem: Given elastic modulus a(x), solve 1D wave equation for
Ricker wavelet source g(t) to obtain observed waveform y(0, t) at top
surface:

ρ∂
2y
∂t2
− ∂

∂x

(
a(x) ∂y∂x

)
= δ(x− 0)g(t)

a ∂y
∂x

∣∣∣
x=0

= 0

√
ρa ∂y

∂t

∣∣∣
x=1

= −a ∂y
∂x

∣∣∣
x=1

y|t=0 = 0
ẏ|t=0 = 0

Inverse problem: Given observed noisy waveform and layered
parametrization of elastic medium modulus a(x) with associated prior,
recover layer moduli and associated uncertainty
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Sample noisy observations
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Prior and likelihood distributions

Gaussian smoothness prior between layers:

Covariance matrix Γ between layers i and j:

Γij = θ1 exp
(−(xi − xj)2

2θ2
2

)
Prior mean is 5 for all layers

Gaussian likelihood function:

πlike(yobs|a) = exp
(
− 1

2(f(a)− yobs)
TΓ−1

noise(f(a)− yobs)
)

We wish to sample the posterior distribution:

πpost(a|yobs) ∝ πpr(a)πlike(yobs|a)
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Some realizations of 16-layer prior
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Convergence comparison for 65-layer problem

Multivariate potential scale reduction factor (MPSRF) convergence
statistic for 65-layer problem

unpreconditioned Langevin vs. stochastic Newton vs. Adaptive Metropolis
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Rescaled 65-layer MPSRF convergence
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65-layer prior

Density plot of marginal pdfs of prior of elastic moduli of 65 layers
Blue curve is “truth” modulus used to synthesize observations

Other colors are draws from prior
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65-layer posterior

Density plot of marginal pdfs of posterior of elastic moduli of 65 layers
Blue curve is “truth” modulus used to synthesize observations

Other colors are draws from posterior
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MPSRF convergence statistic for 1025-layer problem
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1025 layer posterior

Density plot of marginal pdfs of posterior of elastic moduli of 1025 layers
Blue curve is “truth” modulus used to synthesize observations
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Statistical inverse electromagnetic obstacle scattering

Maxwell’s equations:

∇×E = −µ∂H
∂t

∇×H = ε
∂E

∂t
∇ ·E = 0
∇ ·H = 0

E . . . Electric field

H . . . Magnetic field

µ . . . permeability

ε . . . permittivity
Scattered electric field Ez
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Problem setup

Forward code based on C version of Matlab code from J. Hesthaven
and T. Warburton, Nodal Discontinuous Galerkin Methods

Extended to include adjoint-based shape gradient and shape Hessian

Discontinuous Galerkin 3rd-order spectral elements in space

Fourth-order, five-stage explicit Runge Kutta scheme in time

Prior favors shape with small area

πpr = exp
(
−β

2

∫ 2π

0
r2 dθ

)
, β = 0.1

Shape is parametrized by 6 cosine modes

r(θ) =
5∑
i=0

ai cos (iθ)
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Problem setup, cont.

Computational domain Ω = {(x, y) : −1 ≤ x, y ≤ 1}
PML domain ΩPML = {(x, y) : 1 ≤ |x|, |y| ≤ 2}
Kite shape to generate synthetic observations:

x = 0.2 [cos(θ) + 0.65(cos(2θ)− 1)] , y = 0.3 sin(θ)

Incident wave EIz = cos (8(t− x)) , Hx = 0, Hy = 0 from left

31 observation points: x = −0.9, y = linspace (−0.9, 0.9, 31)
Ez, Hx, Hy are observed in 0 ≤ t ≤ π with 5% Gaussian noise

∆t = 10−3 with 3324 time steps

Mesh size hmin = 0.05 (∼135,000 DOF)
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Results using stochastic Newton for 6-parameter problem
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3D Inverse elastic-acoustic wave propagation
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Conclusions

Target: PDE-based Bayesian inverse problems

Stochastic Newton (inverse-Hessian-preconditioned Langevin MCMC)

motivated by connection to deterministic Newton method
exactly samples a Gaussian posterior
dense implementation shows vast improvement over black-box MCMC
(adaptive Metropolis)
low rank implementation able to solve 1025-dimension inverse
scattering problem

Current work aimed at capitalizing on advances in deterministic PDE-based
optimization and inverse methods to improve stochastic Newton

inexact Newton (Steihaug-Eisenstat-Walker ideas)
trust region methods
exploit “compact + differential” structure of Hessians (e.g. low rank
approximations, Fredholm-multigrid type preconditioners)

Exploiting deterministic PDE inverse problem structure should play an
important role in scaling MCMC to high dimensions and expensive forward
problems
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