# **Source Inversion Validation**

# **Stage 2: Initial Inversion Exercises**

# Inverting noise-free synthetic seismograms, computed on a dense receiver grid, for a simple crack-like spontaneous dynamic rupture model

In this test we consider a crack-like spontaneous dynamic rupture, embedded in a layered isotropic velocity-density structure, to test how well source-inversion techniques can retrieve the macroscopic source properties as well as the spatio-temporal evolution of the rupture process. The material parameters are identical to the ones used in the Green's function tests.

#### Coordinate system:

Right-handed Cartesian coordinate system, with positive X pointing East, positive Y pointing North, and positive Z upward. All coordinates are in km.

## Material properties:

Layered isotropic velocity-density structure; Q<sub>S</sub> and Q<sub>P</sub> are assumed to be infinite everywhere (Fig. 1).

| Depth | $V_P$  | $V_{S}$ | Density              |  |
|-------|--------|---------|----------------------|--|
| [km]  | [km/s] | [km/s]  | [g/cm <sup>3</sup> ] |  |
| 0.0   | 4.8    | 2.6     | 2.3                  |  |
| -2.0  | 4.8    | 2.6     | 2.3                  |  |
| -2.0  | 5.5    | 3.1     | 2.5                  |  |
| -4.8  | 5.5    | 3.1     | 2.5                  |  |
| -4.8  | 6.2    | 3.6     | 2.7                  |  |
| -18.0 | 6.2    | 3.6     | 2.7                  |  |
| -18.0 | 6.8    | 3.8     | 2.8                  |  |
| -24.0 | 6.8    | 3.8     | 2.8                  |  |
| -24.0 | 8.0    | 4.62    | 3.2                  |  |
| -45.0 | 8.0    | 4.62    | 3.2                  |  |



Figure 1: Velocity-density model for inversion exercise.

# General source information (label: ss inv1)

- Vertical strike-slip fault: fault dip = 90°; fault strike = 90°
- The rupture remains buried and does not reach the surface
- Fault dimensions: approximately 30 km in length, 15 km in down-dip extent
- Seismic moment:  $M_0 \approx 1.0 \times 10^{19} \text{ Nm } (M_W 6.6)$
- Hypocenter depth = 14.1 km;
- Slip and slip-rate are heterogeneous over the fault plane, as a result of the dynamic rupture simulation with heterogeneous initial stress on the fault.
- Rupture times imply some variations in rupture speed over the fault
- The source-time function may vary over the rupture plane

# Receivers (surface receivers only, Z = 0):

The receiver configuration consists of 168 receivers arranged in a "race-track" pattern around the surface-projection of the top-edge of the fault (Fig.2). The locations of the receivers at which synthetic ground-motions are computed are given in the file **StationLocations.dat**. It is intended to keep this station configuration (or a somewhat modified one) for all upcoming inversion exercises. Synthetic seismograms are contained in the zip-file **inv1\_synthetics.zip**, in the format given below.



**Figure 2:** Receiver geometry for inversion exercises. (Top): Entire domain; (Bottom): Close-up of near-source region. We use a right-handed coordinate system with positive X pointing East, positive Y pointing North, and positive Z pointing up. The red line indicates the surface projection of the up-dip edge of the vertical strike-slip fault plane at depth. The green and blue lines mark surface projections for a dipping fault (part of a later exercise).

(prepared by Martin Mai)

#### Other information:

- Provided synthetic seismogram have a nominal maximum resolved frequency of ~3 Hz
- If the inversion is carried out with filtered ground-motions, please specify the chosen frequency range as well as the type of filter (i.e. 'butterworth') and filter order.
- Specify the ground-motion computation tool used (i.e. CompSyn, Axitra, 3D-finite-difference code), and the inversion approach (i.e. multi time-window linearized inversion; non-linear inversion using an genetic algorithm)
- The modeler can choose the receivers he/she uses for the inversion; ideally, he/she would use a sufficiently large set of stations, and then computes the forward-predictions from his/her rupture model at 10-20 sites **NOT** used in the inversion procedure.
  - O Predicted motion at sites that have been used in the inversion will receive a corresponding file name with the suffix '.inv' (see below)
  - O Prediction motions that are computed from forward-modeling with the inferred rupture model will receive a file name with the suffix '.fwd' (see below)

#### Output instructions:

#### **Predicted ground motions**

Submit clearly and unambiguously labeled ascii-files in the following format, containing velocity time histories in m/s (Vx positive East, Vy positive North, Vz positive up)

- "label" is the above (in red) noted source-model indicator
- "modeler": name/identifier of modeler or modeling group
- date: date when calculations were performed (format dd.mm.yy)
- rec#: receiver number (see above tables)
- rec crd X, rec crd Y: receiver coordinates (see above tables, in km)
- npts: number of points in time series
- dt: sampling interval (in sec)
- fmax: maximum resolved frequency in these calculations (in Hz)

#### filename:

```
label_modeler_receiver#.inv or label_modeler_receiver#.fwd
e.g. ss_inv1_mai_12.inv for a site used in the inversion
ss_inv1_mai_12.fwd if motions are computed using the inferred rupture model
```

#### header:

```
label modeler date
rec# rec_crd_X rec_crd_Y
npts dt fmax
```

time-series data (formatted as 15.6e, see example below):

```
x-comp y-comp z-comp
```

#### Example time-series output file: ss\_inv1\_MaiMartin\_3.inv

| ss_inv_1     | MaiMartin    | 15.10.2010    |
|--------------|--------------|---------------|
| 3            | 10.0         | 1.0           |
| 1666         | 0.006        | 5.0           |
| 1            | 12.2880      | 9.9960        |
| 2.708477e-01 | 2.854577e-01 | 2.933980e-01  |
| 2.953652e-01 | 2.918521e-01 | 2.831548e-01  |
| 2.694041e-01 | 2.505884e-01 | 2.266108e-01  |
| 1.973462e-01 | 1.627026e-01 | 1.226894e-01  |
| 7.748341e-02 | 2.749405e-02 | -2.658398e-02 |

#### Rupture model output

Submit clearly and unambiguously labeled ascii-files in the following format, containing the estimated macroscopic source parameters in the header as well as information on the source-inversion parameters. We accept two different formats, specified below, depending on whether a single time window or several time windows are used in the inversion. The following parameters are reported in the header section:

- "label" is the above (in red) noted source-model indicator
- "modeler": name/identifier of modeler or modeling group
- date: date when calculations were performed (format dd.mm.yy)
- "inversion method": specify the inversion approach used
- "Ground-motion code": specify the numerical code for ground-motion computation
- SourcePar1: moment magnitude and seismic moment (in Nm)
- SourcePar2: estimated length and width of fault plane (in km)
- Hypocenter: estimated hypocenter coordinates in X, Y, Z (in km)
- Depth2Top: estimated depth to top of fault plane (in km)
- NumPoints: number of points in along-strike (Nx) and down-dip (Nz) direction of the rupture model
- NumTimeWn: number of time windows (Nt) and their spacing (Dt, in sec)
- ElemSTF: string to indicate elementary source-time function used

For each point on the fault, indicated by its X, Y, and Z position, several rupture quantities are then listed in subsequent columns, i.e. each row of the output table contains the source parameters at a given point on the fault plane. Thus, the rupture-model output looks as follows:

## If the inversion is carried out using a single time window:

# If the inversion is carried out using several time windows:

| # |                                                  |            |         |                              |        |         |         |         |  |
|---|--------------------------------------------------|------------|---------|------------------------------|--------|---------|---------|---------|--|
| # | SIV Inversion Exercise                           |            |         | s invl frog                  |        |         |         |         |  |
| # |                                                  |            |         | "Miss Piggy"                 |        |         |         |         |  |
| # | Inversi                                          | ion Method | ,,      | linearized multi time-window |        |         |         |         |  |
| # |                                                  |            |         |                              |        |         |         |         |  |
| # | # SourceParl Mw-Mo [Nm]<br># SourcePar2 L-W [km] |            |         |                              |        |         |         |         |  |
| # |                                                  |            |         | ·                            |        |         |         |         |  |
| # |                                                  |            |         | ·                            |        |         |         |         |  |
| # | Depth27                                          |            | [km]: - |                              |        |         |         |         |  |
| # | NumPoir                                          | nts Nx-Nz  | : 1     | 3, 12                        |        |         |         |         |  |
| # | NumTime                                          | eWn Nt-Dt  | : 4     | , 0.5                        |        |         |         |         |  |
| # | ElemSTF                                          | ?          | : i     | so-tri                       |        |         |         |         |  |
| # |                                                  |            |         |                              |        |         |         |         |  |
| # | X                                                | Y          | Z       | TotalSlip                    | Rake   | RupTime | SlipTW1 | SlipTW2 |  |
| # | km                                               | km         | km      | m                            | deg    | s       | m       | m       |  |
| # |                                                  |            |         |                              |        |         |         |         |  |
|   | 4.0000                                           | -0.0000    | -6.0000 |                              | 0.0000 |         | 1.0000  | 0.5555  |  |
|   | 3.0000                                           | 0.0000     | -6.0000 |                              | 0.0000 | 3.0000  | 1.0000  | 0.5555  |  |
|   | 2.0000                                           | -0.0000    | -6.0000 |                              | 0.0000 | 3.0000  | 1.0000  | 0.3333  |  |
|   | 1.0000                                           | -0.0000    | -6.0000 |                              | 0.0000 | 3.0000  | 1.0000  | 0.6666  |  |
|   | 0.0000                                           | -0.0000    | -6.0000 |                              | 0.0000 | 3.0000  | 1.0000  | 0.1111  |  |
|   | 1.0000                                           | -0.0000    | -6.0000 |                              | 0.0000 | 3.0000  | 1.0000  | 0.2345  |  |
|   | 2.0000                                           | -0.0000    | -6.0000 |                              | 0.0000 | 3.0000  | 1.0000  | 0.4444  |  |
|   | 3.0000                                           | -0.0000    | -6.0000 |                              | 0.0000 | 3.0000  | 1.0000  | 0.1111  |  |
|   | 4.0000                                           | -0.0000    | -6.0000 | 0.0000                       | 0.0000 | 3.0000  | 1.0000  | 077777  |  |